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1. INTRODUCTION

A parametric paper study using empirical equations for launch, aerodynamic flight, and terminal
ballistic characteristics for the development of the 0.60-cal. armor-piercing, fin-stabilized, discarding
armature (APFSDA) launched from an electromagnetic (EM) gun system was performed by Mr. Alexander
Zielinski (Engineering Physics Branch of the Terminal Ballistic Division of the U.S. Army Ballistic
Research Laboratory).* Design parameters fixed in the study include a 0.60-cal. ban.el length of 1.6 m,
an armature length of 1.6-cal., and an engagement range of 1,500 m for a 0° obliquity rolled homogeneous
armor (RHA) target (Zielinski 1991).

A candidate projectile package from the study was developed. The study utilized a methodology by
which required projectile dimensions are determined from launch velocity, muzzle energy, and structural
ar.! thermal loads. The 0.60-cal. gun system has projectile performance specified as a 32-g mass launched
at 2,000 m/s (Kitzmiller et al. 1991). Iterations for the terminal ballistic surrogate (TBS) design launch
mass and their velocity trade-offs above and below the 0.60-cal. specifications were used to determine the
substantial performance obtained by a projectile package launched at 1,800 m/s and 55 kJ of total muzzle
kinetic energy. The following is the analysis of this type of projectile against RHA and some evaluations
of high hardness armor (HHA).

A surrogate projectile was designed for the terminal ballistic evaluation to lower the manufacturing
costs and to ease the launchability from the tcrminal ballistic laboratory gun system. The TBS was
designed to reflect the performance of the actual projectile without incorporating many of the intricate

design features that do not influence the penetration.

2. PROJECTILE DESCRIPTION

Figure 1 is a photograph of the 0.60-cal. APFSDA launch package. It has supercaliber grooves for
transferring the load developed in the aluminum sabot/armature to the sub-projectile. A polypropylux
obturator encompasses the front of the aluminum armature which, afier exiting the barrel (free flight), is

discarded. At the rear section there is a long reduced threaded region for attaching the fin assembly. The

* On 30 Septemnber 1992, the U.S. Army Ballistic Rescarch Laboratory (BRL) was deactivated and subsequently became part
of the U.S. Army Research Laboratory (ARL) on 1 October 1992.
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Figure 1. Photographs of the 0.60-cal. APFSDA projectile package.




front of the penetrator is a sharp conical nose (10° half-angle) designed as a compromise between low
aeroballistic drag and deleterious terminal ballistic effects at obliquity. As can be seen, this is a very
intricate design which would require extensive machining. For terminal ballistic evaluations, the detail
in supercaliber grooves and reduced fin assembly region is not required. The nose shape, however, is
needed to accurately define the terminal ballistic performance, especially for oblique targets.

By eliminating the details required for the EM launch and free-flight, a smooth right circular cylinder
penetrator of equal length and diameter with a conical nose was substituted to use in the terminal ballistic
evaluation. Figure 2, a schematic comparing both subprojectiles, shows that the overall length, diameter,
and mass are very similar. The increase in mass from filling in the reduced section for the fin assembly
is compensated for by the decrease in mass from eliminating the supercaliber grooves. The TBS design
becomes much easier to launch in the laboratory terminal ballistic range and less expensive to produce.

The projectile is manufactured from a tungsten heavy alloy (93%W-4.9%Ni-2.1%Fe) which was
moderately cold worked. The nominal mechanical properties of the penetrator material (as given from
the manufacturer, Teledyne Firth Sterling) are as follows: density - 17.6 g/cm3 , ultimate tensile strength -

185 ksi, tensile yield strength - 150 ksi, minimum elongation - 8%, and hardness - Rc45.

3. TARGET MATRIX

The baseline terminal ballistic performance is characterized with RHA, Mil-Spec-12560G. RHA plates
vary in hardness with thickness. Due to the rolling nature of the manufacturing process (thinner plates
are rolled for a longer period of time), the hardness increases as the thickness decreases.

Initial terminal ballistic testing begins by determining the depth of penetration into semi-infinite armor,
an armor of sufficient thickness and width sc the depth of penetration is not influenced by any free surface
effects. For these tests, target thicknesses of 4-6 in (101.6~152.4 mm) were used, BHN 286-302. The
depth is measured by taking a high-powered radiograph of the block and/or sectioning the block along the
shot line. Once the semi-infinite performance is quantified, the performance against finite thickness plates
at normal impacts is evaluated. This helps to ascertain the rear free surface effects and separate the
penetration and perforation effects. Finally, the effect of obliquity is examined by varying the
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thickness and obliquity of the finite RHA plates. The thinner plates used for the finite test have BHN
values ranging from 302 to 364.

A similar analysis is used for HHA, Mil-Spec-46100C. HHA plates are heat treated to achieve their
desired hardness (BHN 512) and are, therefore, the same hardness for all thickness plates. Because of the
heat treatment process, it is difficult to form HHA plates of thicknesses greater than 1.5 in (38.1 mm) and
with a consistent through thickness hardness. The targets evaluated in this test were less than 1.5 in thick,
(122 in [12.7 mm] and 3/4 in [19.01 mm]). The size of the target matrix for the HHA was limited to two
finite thickness targets due to the funding and availability of supplies.

4. TEST PROCEDURE

The actual EM launch system was not required to evaluate the terminal ballistic performance of the
penetrator. Rather, the standard launch system for terminal ballistic evaluation in the laboratory test range,
ARL Range 110, was used.

A 10-ft-long (3.05-m) smoothbore barrel, which gives smooth accelerations for a large range of
velocities, was implemented. A four-piece polypropylux sabot and a steel pusher disc, recessed in a
polypropylux obturator, make up the launch package (shown, along with the TBS rod, in Figure 3). After
exiting the gun tube, the sabot separates from the rod very quickly, and the pusher and obturator follow
the penetrator to the target. Since a deflector was not used, the pusher disc and obturator impact the target
after the penetrator-target interaction is complete.

Preimpact measures are generated from a flash-radiograph system. While in free-flight, the penetrator
breaks an electrical scree + starting a timer that pulses two preimpact orthogonal flash radiographs. These
radiographs capture images or the penetrator, just prior *o impacting the target. From the time delay
between the flashes and fiducial lines on the film, the velocity and orientation of the impacting penetrator
can be determined (Grabarek and Herr 1976). In addition, for the finite thickness plates, a similar break
screen arrangement is located on the back face of the target to capture two images (solely in the vertical
plane) of the exiting behind-armor target debris and residual penetrator. These images are used to estimate
residual penetrator velocity, mass, and departure angle. They can also be used to evaluate the behind-
armor lethality of the debris. Various preshot and in-flight parameters measured are detailed in
Appendix A.
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Figure 3. Terminal ballistic launch package with surrogate projectile. 4%

For the finite targets, the impact velocity and residual velocity data pairs are used in an empirically
fitted equation (1) to calculate the limit velocity for the target (Lambert and Jonas 1976). The limit
velocity is the maximum impact velocity where the residual velocity is zero. The empirical parameters
A, P, and the V, are determined through a nonlinear least square fit to Equation 1. Sample V¢~V data

r

plots to Equation 1 are shown in Appendix B. NN

Vg = A(VgP - v )P, M

where
Vg = residual velocity (m/s),
Vg = striking velocity (m/s),
V. = limit velocity (m/s) to be determined,
A and P = empirical fitting parameters. Rl

Postmortem measures of all target blocks are also veonicd (described in detail in Appendix A).

Depending on whether the shot was a complete perforation: or a partial penetration, the entrance, exit,




depth of penetration, and/or center hole dimensions for the finite targets are measured. To evaluate the
penetration channel parameters (depth, volume, diameter) of the semi-infinite target blocks, a high-powered
radiograph is taken through the target. The typical method of cross-sectioning the semi-infinite block is
used after the radiographic method because, for the small diameter rod, the penetration channel is so
narrow it is difficult to cut at the exact half-section. By using both methods, cross sectioning and
radiographs, an accurate assessment of the penetration channel is possible.

5. TERMINAL BALLISTIC RESULTS
5.1 RHA Semi-Infinite Target. A summary of the semi-infinite results is presented in Table 1. The
final depth of penetration (mm) for the seven shots and their preimpact measures, yaw, striking velocity,

and mass, are shown. A detailed listing of the individual shot data appears in Appendix B.

Table 1. Semi-Infinite RHA Terminal Ballistic Results

Striking 1
Shot No. | Total Yaw Velocity Mass Penetration
_O (m/s) (8 mm) |
1137 1.46 1,122 12.81 26.2
Il 1136 ~127 1,220 12.82 30.0
[ 1138 675 1,260 12.83 338
[ nae 2.02 1,485 12.77 49.0
1139 2.30 1,490 12.81 45.2
1140 0.90 1,699 12.81 65.5
1141 0.79 1,861 12.76 75.7

5.2 Finite Target. Table 2 is a listing of the limit velocities determined for the finite targets
evaluated. The RHA targets consisted of a 0° obliquity plate, 57° obliquity plates of two thicknesses, and
a 70.5° obliquity plate. Limited testing supplies allowed for evaluation of only two HHA targets at
obliquities of 57° and 70.5°. The thickness and obliquity for these targets match some of those for the
RHA, to nossibly compare the performance of HHA to that of RHA. Again, a detailed individual shot
tabulation for each test series appears in Appendix B.




The RHA data were fairly clean (good impacts and respectable fits to Equation 1), consisting of seven
to eight shots each. In contrast, the HHA data are not as clean. One series needed 12 shots (there were
many bad yawed impacts, and the data were still very scattered). The final data (19.05-m HHA at 57°
obliquity) series was terminated as the supplies were exhausted. An estimate was made for the ballistic
limit velocity by averaging the only partial penetration and the lowest complete perforation (a two shot
Vo With a spread of 2 m/s). The large scatter in the residual velocities (which is more typical for HHA
plates) prevented the fitting routine from calculating the limit velocity.

Table 2. Limit Velocities for the Finite Thickness Targets

e
Normal Average | Line of Sight Limit
Material | Thickness | Obliquity | Hardness Thickness Velocity

(mm) © | @ (mm) (m/s)

RHA 50.8 0 [ 321 50.8 1,483
RHA 19.05 57 360 35.0 1,220
RHA 31.75 57 330 58.3 1,716
RHA 12.7 70.5 364 38.1 1,262
HHA 19.05 57 512 35.0 1,330
HHA 12.7 70.5 512 38.1 1,430

6. DISCUSSION

6.1 Semi-Infinite Target. A plot of the semi-infinite data, including the corresponding total yaw, is
shown in Figure 4. As can be seen, the impact with the highest yaw (2.3°) falls below the good impact
data. The point with 2.0° yaw, however, is very near the nomm. This implies, for a 0° obliquity target,
yaw up to approximately 2.0° will not greatly affect the final depth of penetration. Equation 2 is a
geometric calculation of the critical yaw (Silsby et al. 1983), yaw large enough for the tail end of the rod
to have physical impact on the edge of the penetration channel, and is given as,

(H-Dwﬂ

. -1
Yo = sin [ T Q)
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where
Yo = geometric critical yaw (deg),
H = diameter of penetration channel (mm),
D = original diameter of penetrator (mm),
L = original length of penetrator (mm).

Using the dimensions of the rod diameter of 3.9 mm and length of 56 mm (not including the conical
nose), and the average entrance hole diameter (6 mm), a critical yaw is calculated to be 1.07°. This is
lower than the 2.0° yaw value estimated from the plot.

The critical yaw equation (2) (Silsby et al. 1983) was developed with hemi-nose penetrators where

the entrance hole is approximately the same diameter as the constant diameter portion.

The geometric calculation determines the value where the tail first interferes with the edge of the
channel. The plot implies that minor interference does not affect the final depth of penetration
substantially. Also, the conical nose shape of the rod produces a narrow entrance hole which widens as
the depth increases. Copies of two radiographic images for the semi-infinite targets are shown in Figure
3. As described, the entrance hole is narrow as the target material is displaced just enough to allow the
remaining rod to pass through. As the constant diameter of the rod is being eroded, the channel diameter
widens (Farrand and Zook 1992). If the critical yaw was recalculated using this constant diameter channel
portion (7.5 mm) instead of the narrow entrance hole region, the critical yaw becomes 1.8°. This tends

to agree more with the plotied data.

Shot No. 1137 Shot No. 1139

Figure 5. Prints of radiographs from semi-infinite blocks.
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6.2 Finite Target. A plot of line-of-sight (LOS) thickness as a function of velocity for both the semi-
infinite and finite thickness RHA data is shown in Figure 6. An estimated curve for the semi-infinite data
is constructed, with the highest yaw data lying somewhat below the curve.

The distance between the 0° finite target and the 0° semi-infinite target curves depicts the added
thickness the projectile can perforate over its depth of penetration at the same velocity. This additional
perforation thickness is due to failure of the rear free surface, also known as the plugging phase. The size
of the plug is dependent on the penetrator diameter and target material. For RHA and the small diameter
rod, this appears to be approximately one half the original rod diameter or 2 mm.

A typical long rod penetrator can perforate more LOS thickness RHA as the obliquity of the finite
target is increased. As the penetrator creates a channel through the finite target, it tends to take the path
of least resistance. For high-obliquity targets, this tends to be towards the normal of the target, decreasing
the effective LOS thickness of the target. If the penetrator has a conical nose shape, the penetrator will
deflect on the target front surface and delay the perforation process. In addition, once the penetration
begins for the higher obliquity targets, its channel is more parallel to the plate, so its effective thickness
is increased. This deflection of the penetration channel is depicted in Figure 7 (Farrand and Zook 1992).
Figure 7 shows the cross section of semi-infinite plates at 70.5° obliquity after being impacted by various
nose shape, L/D = 10 rods, at the same nominal velocity.

The conical nose shape of the EM long rod did experience deflection for the higher obliquity targets.
If the target is relatively thin, however, this deflection is compensated for by the plugging or break out
of the rear free surface. So at the lower velocity (1,250 m/s), the EM subprojectile LOS thickness does
not change considerably with a change in obliquity. As the thickness of the target is increased, the
deflection is more of a factor because the penetration phase contributes much more than the plugging
phase. As can be seen from Figure 6, at the higher velocity and/or thicker target, the penetrator can
actually penetrate further into semi-infinite armor than it can perforate at 57° obliquity.

Although penetration into semi-infinite HHA data were not accumulated in these tests, past
experiments with similar caliber projectiles have shown that HHA is harder to penetrate than RHA
(Magness et al. 1988). Also, the plugging phase is much larger in HHA. Because the plug is a function
of the penetrator diameter, its contribution for the 0.60-cal. long rod penetrator is probably minor.

11
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LOS NORMAL

/

FLAT | 24 mm
1499 m/s g3 mm
HEMI 24 mm
1509 m/s
86 mm
SHORT :
1526 mis 24 mm
91 mm
AN
LONG 17 mm
,\
CONIC 18 mm

1524 m/S 90 mm

[

Figure 7. Comparison of various nose shapes into semi-infinitc RHA at 70.5° obliquity.
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Figure 8 is a pl.. of the LOS thickness for the two HHA targets and also the same thickness and
obliquity RHA targets. The decrease in penetration ability and, probably, increased deflection (due to the
higher hardness) are reflected in the much higher limit velocities for the equivalent thickness and obliquity
HHA 1targets. In addition, the much larger gap between the limit velocities for the 57° and 70.5° HHA
targets as compared to that of the RHA targets, implies that the HHA plate deflects the rod even more at
the higher obliquities.

7. SYSTEM PERFORMANCE

From the terminal ballistic data generated, an overall model to estimate the perforation ability of the
penetrator over a range of velocities and obliquities can be constructed. A common model used in
describing the perforation by small-caliber ammunition is the Grabarek model, shown in Equation 3. It
is an empirical model derived from the De Marre formulation (Grabarek 1971).

MVZ /a
Ty cos®(8) = D —5| 3)

where

Ty = normal target thickness (mm),
M = mass of penetrator (g),

D = diameter of penetrator (mm),
© = target obliquity (deg),

V = impact velocity (m/s),

A, o, B = empirical fitting parameters.

As can be seen, the model is dependent on mass, diameter, and impact velocity. There are three
fitting parameters: A, alpha (@), and beta (B). Beta reflects the effect of obliquity. If beta equals 1, then
the LOS thickness that can be perforated is constant, regardless of obliquity. If beta is less than 1, then
the penetrator can perforate a greater LOS thickness at obliquity than at zero. Conversely, if beta is
greater than 1, it will perforate less LOS thickness at obliquity. Where dependence on obliquity is not
as simplistic and straightforward, additional modifications to beta are appl. :d. By making beta a function
of obliquity and velocity, it allows the obliquity effect to vary with thickness.
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For the complicated obliquity effects observed with the 0.60-cal. TBS, a complex fit t0 the beta value
was develcped. From this formulation, the drop-off in performance with increase in obliquity and ever
greater decrease in performance with thicker targets (higher velocity) is modeled. Since this is a force fit
to the data, it is recommended that it not be extrapolated far beyond the bounds of the actual data. A
mass of 12.8 g and a diameter of 3.94 mm were used in the routine to derive the best fit for the empirical
values; A = 38,050, a = 0.981, and the beta function described in Equation 4. Beta from this equation
ranges from 0.934 for obliquities less than 57° and velocities less than 1,200 m/s, to greater than 1.0 at
higher velocities and obliquities (i.e., at a velocity of 1,600 m/s and obliquity of 70.5°, beta is 1.20).

B = 0934 for 6< 57° and V<1200

B(,V) = 0.934 + (0.001185)(® - 57)
+ (0.0006129)(V - 1200) 4)

By incorporating the predicted launch and flight characteristics (Zielinski 1991) and the terminal
ballistic fit just described, the range at which a target (thickness and obliquity) can be defeated is easily
defined. Table 3 shows the normal target thickness (mm) that can be perforated as a function of obliquity
and range (or velocity). A muzzle velocity of 1,800 m/s and an aerodynamic retardation in velocity of
267 m/s/km were used in the analysis.

All of the terminal effects are incorporated in Table 3. At 0° obliquity, the penetration at muzzle
velocity (1,800 m/s) is very high (74.2 mm) and drops rapidly (36.2 mm) at extended range, 2,000 m
(1,260 m/s) As obliquity is increased at the muzzle velocity, the LOS thickness capability is drastically
decreasing, going from 74.2 mm at 0° to 60 mm (30 mm normal) at 60°, and 53 mm (18.1 mm normal)
at 70°. At the 2,000-m range, however, the LOS thickness is fairly constant, ranging from 36.2 mm at
0° to 36.8 mm (18.4 mm nomal) at 60°, and 36.5 mm (12.5 mm nomal) at 70°. Finally, at the lowest
velocities (1,132 m/s) or extreme range (2,500 m), the obliquity effect is slightly reversed. At 0° it will
perforate 28.8 mm, at 60° the LOS thickness is 30.2 mm (15.1 mm normal), and at 70° it is 30.4 mm
(10.4 mm normal). There is not sufficient data at much lower velocities to comment on the trend for even

thinner targets.
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The perforation data at 0° obliquity and 1,500-m range compare favorably with the semi-infinite,
APFSDA design results (approximately 45 mm) from open literature data (Zielinski 1991). Of course,
prediction of the obliquity effects was not possible from the reference.

For lack of data, similar derivations were not constructed for the HHA. 1t is obvious, however, that
a large obliquity effect prevails, as the gap between the two limit velocities is much greater than that for
the comresponding RHA. This by itself shows how it is not possible to extrapolate from RHA to HHA
with this limited data set. Because only one thickness for each obliquity was evaluated, the dependence
with respect to thickness could not be determined either.

8. CONCLUSIONS

A terminal ballistic evaluation of a TBS for a candidaie electromagnetically launched 0.60-cal.
APFSDA projectile into RHA was completed. By applying the launch and flight characteristics of the

design projectile, estimates for its defcat ranges were developed.

The intricate design of the actual EM projectile was simulated by an equal length and diameter right
circular cylinder with the same conical nose shape. The conical nose design proved detrimental at the
higher obliquity. At high velocities, the performance into 0° RHA was quite good. At these higher
velocities and thicker armor plates, however, the performance at obliquity dropped drastically. For
extended ranges or lower impact velocity, the perforation at 0° and the LOS thickness at obliquity is
respectable.

Two HHA targets were also evaluated and tabulated for future reference. It was noted that the
extremely small-diameter rod did not contribute to the plugging as much as might be expected for similar
caliber armor-piercing (AP) rounds. The main portion of defeating thin HHA plates is usually the
plugging phase. It would be possible to refine the TBS design by incorporating the performance of an
HHA 1arget in the methodology. In contrast, for the RHA, where most of the perforation process is
penetration, the 0.60-cal. TBS has comparable performance.

18
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APPENDIX A:

AN EXPLANATION OF FIGURES AND TABLES OF INDIVIDUAL FIRING DATA
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The following is a description of the table headings and columns which are used in the individual shot
data for each test series detailed in Appendix B.

The "test series 1abel” at the top of each table describes the particular configuration common to the
firings listed below the heading. Each "test series table” is organized into three subtables. The uppenmost
subtable, essentially a "black-box" description, lists the most important measurable preimpact parameters,
such as the striking velocity, mass, yaw, and pitch, followed by the most important post-impact data,
including the residual penetrator’s mass, velocity, and flight direction. A negative shot number indicates
that the resulting data was not considered a "fair hit” and, therefore, not used in the limit velocity or V-50

determination.

The other two subtables tabulate additional post-impact data such as the target plug mass and velocity;
the entrance, exit, and midplate dimensions of the perforation hole; and other behind-armor debris
measures for single plate targets. Figures A-1 through A-4 illustrate many of the measurable quantities
for single plate targets. For the spaced array target, Figure A-5 depicts the measured parameters unique
to spaced plate targets.

An additional set of data, generated to determine characteristics of penetration into semi-infinite amor,
is also included in the following appendix. The values listed in this table are obtained by sectioning the
semi-infinite plate along the centerline of the penetration hole. This table is divided into two subtables,
the first is the "black-box" table, and the other contains secondary measures of the penetration tunnel.
Figure A-6 is a schematic of the sectioned penetration tunnel and its related measures.

Below is an alphabetical listing of the abbreviations used as column headings in each of the subtables,
with a definition of each term and a brief description of how it is measured. Also included are some of
the abbreviations used for the entries in the columns. Some of the listings below may not have entries

in the test series tables generated as part of this report.

A - an adjustable parameter in the limit velocity functional formulation, Vr = A ( VsP - VIP)1/P,
where A is the slope of the asymptote of the fitted curve, restricted to A<1.

« - the striking pitch, orientation of the projectile relative to its flight path, measured in the
vertical plane, degrees (see Figure A-1).

23




al (o2) - pitch of projectile after perforating the first (second) plate of spaced array target,
relative to projectile’s flight path, degrees (see Figure A-5).

aR - the pitch of final residual penetrator, relative to its residual flight path; the entry NA appears
if the residual penetrator is tumbling rapidly, degrees (see Figure A-1).

Area - the cross-sectional area of the penetrator, used for comparisons in the semi-infinite data,

square centimeters.
Area hole - the average cross-sectional area of the hole produced in semi-infinite test, measured
by using the diameter of the sectioned armor and assuming a circular tunnel, square centimeters

(see Figure A-6).

B - the striking yaw, orientation of the projectile relative to its flight path, measured in the

horizontal plane, degrees.

BG/L or Blg. - height of lip on the exit hole or bulge height, height above the rear surface of the
plate, measured perpendicular to surface, centimeters (see Figures A-2, A-3).

BHN - Brinell Hardness of monolithic target plate.

BHNI1, BHN2, BHN3 - Brinell Hardness of first, second, and third plates of spaced array target.

BlgL - bulge length, length of rear surface bulge of finite monolithic target or of last plate in
spaced array target, centimeters (see Figure A-2).

BIgW - bulge width, width of rear surface bulge of finite monolithic target or of last plate in

spaced array target, centimeters.

CenL - center hole length, length of penetration hole at midthickness in the plate, measured in the

plane of target, centimeters (see Figure A-3).
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CenW - center hole width, width of penetration hole at midthickness in the plate, centimeters (see
Figure A-3).

CL PL#1.2,3 - center hole length in first (second, third) plate of spaced array target, length of
penetration hole at midthickness in the plate, centimeters.

CW PL#1,2,3 - center hole width in first (second, third) plate of spaced array target, width of
penetration hole at midthickness in the plate, centimeters.

CoFS - center of fragment spray angle, the average direction of the behind-armor debris, measured
relative to the penetrator’s original flight path, estimated from the behind-armor radiographs in
the vertical plane, degrees (see Figure A-4).

Cone - cone angle or enclosed spray angle, angle in space which encloses the behind-armor debris

cloud, estimated from behind-armor radiographs in the vertical plane, degrees (see Figure A4).

Dt/Dp - Diameter of the tunnel produced in semi-infinite targets divided by the original diameter

of the penetrator, nondimensional.

EHL - exit hole length, length of exit hole on rear surface of plate, measured in plane of plate,
centimeters (see Figure A-3).

EHW - exit hole width, width of exit hole on rear surface of plate, measured in plane of plate,

centimeters (see Figure A-3).

EntHL - entrance hole length, length of entrance hole on front surface of target, measured in plane

of target plate, centimeters (see Figure A-3).

EntW - entrance hole width, width of entrance hole on front surface of target, measured in plane

of target plate, centimeters (see Figure A-3).

np - departure angle of target plug, measured relative to penetrator’s original flight path, from

x-ray images in the vertical plane, degrees (see Figure A-1).
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n1 (N2, n3) - departure angle of residual penetrator after exiting the first (second, third) plate of
a spaced array target, measured relative to penetrator’s original flight p h, from x-ray images in
the vertical plane, degrees (see Figure A-5).

F - fineness ratio, the length-to-diameter (L/D) ratio of the penetrator.

¥ - total solid angle orientation of the striking penetrator to its initial flight path
(o + 52 = 1), degrees.

K.E. - kinetic energy, the kinetic energy of the round impacting the semi-infinite target, joules.

KE/A - kinetic energy divided by cross-sectional area of penetrator, the energy per area impacting

semi-infinite armor, joules/square centimeter.

KE/V1 - kinetic energy divided by total volume, the energy impacting the armor divided by the

total volume of the tunnel generated while penetrating semi-infinite armor, joules/cubic centimeter.

LP - length of target plug, average dimension of plug, oriented to correspond to exit hole length

in target, where applicable, used in residual plug mass estimates, centimeters.

M/A - mass of penetrator divided by cross-sectional area of penetrator, used primarily in

semi-infinite data, grams/square centimeter.

M/A hole - mass of penetrator divided by cross-sectional area of hole generated in semi-infinite

penetration, grams/square centimeter.

MPL - mass of target plug or plugs, estimated from behind-armor radiographic images, grams (see
Figure A-1).

MPr - recovered plug mass or masses, actual mass of plug recovered after a test firing, compared

with MPL value as a check on estimation accuracy, grams.
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Mr - mass of residual penetrator or residual penetrators, estimated from images in behind-armor

radiographs, grams (see Figure A-1).

MR1 (2) - residual mass of penetrator after perforating the first (second) plate of a spaced array
target, estimated from radiographic images, grams (see Figure A-5).

M.R. Dia - maximum rod diameter, maximum diameter of the mushroomed portion of the final

residual penetrator, if applicable, centimeters.

M. rec - mass of recovered residual penetrator, compared with Mr values as a check on estimation

accuracy, grams.

Ms - mass of penetrator before target impact, grams (see Figure A-1).

NC - not calculated.

NM - not measured.

NR - not recovered.

No. of Pcs. - number of major identifiable final residual penetrator pieces seen in behind-armor

radiographic images. The breakup behavior of the penetrator is indicated by a number code:

1 - one whole piece

21 - two pieces, fracture at nose section

22 - two pieces, fracture at tail section

23 - two pieces, fracture at midlength

31 - three pieces, fracture at nose section

32 - three pieces, fracture at tail section

33 - three pieces, evenly distributed fractures

Frag - many pieces, too small to accurately measure.
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#Pcl (2) - number of major residual penetrator pieces after first (second) plate of spaced array
target, uses same number code as No. of Pcs. on previous page, with addition of 40 - four or more

pieces.

P - an adjusiable parameter of the limit velocity determination equation Vr = A (vsf - wif )—El’-'
wher= P is the power determining how rapidly the fitted curve rises to the asymptote, arbitrarily
restricted to 1 < P < 8 values.

Pen., Pene or Pn- penetration depth into target plate (finite, semi-infinite, or last plate ¢ f spaced
array target), for partial penetrations measured normal to the plate surface, centimeters (see Figure
A-2 and A-6).

P/L - penetration depth divided by original length of penetrator, nondimensional term used in

nomalizing the depth of penetration into semi-infinite anmor.

plv2 - density times the length times the velocity squared of the penetrator, a term used to
characterize the impacting penetrator into a semi-infinite plate, grams/square second.

Rise - target plate rise, rise of the front surface of the target plate encountered after the penetrator
has impacted the semi-infinite armor, centimeters (see Figure A-6).

Rot - rotation, the apparent change in pitch of the final residual penetrator between the two
behind-armor x-ray images, indicative of penetrator tumbling, degrees.

RotR 1 (2) - rotation rate (pitch rate) of the residual penetrator after the first (second) plate of
spaced array target, using the convention that rotation of the nose of the rod toward the target
normal is positive, degrees/second (see Figure A-5).

S - standard deviation, measure of the data spread of Vs, Vr data paii» ..om the fited Vs-Vr

curve, measured on the Vr axis (vertical) only, meters/second.

Shot No. or Sh.# - shot number, the individual test firing identification number; a negative number
indicates that the resulting data was not considered a "fair hit" and, iherefore, not used in the limit

velocity or V-50 determination.
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Time - time between the two behind-armor x-ray flashes, microseconds.

Th. - target plug thickness, the thickness of the rear surface of the target plate that was removed
as a plug, estimated from x-ray images of the target plug, used in plug mass estimates,

centimeters.

Vol Base (Tot) - volume of the penetration hole within target (iotal volume of penetration tunnel,
including portion created from Rise), estimated voiume of the penetration tunnel created in
semi-infinite armor, determined by estimating area of half section and assuming the wnnel was

circular, cubic centimeters (see Figure A-6).

Vpl - velocity of the target plug, as measured in the vertical plane, calculated from behind-armor
radiographic images, meters/second (see Figure A-1).

Vr - velocity of the final residual penetrator, measured in the vertical plane, calculated from

behind-armor radiographic images, meters/second (see Figure A-1).

Vr1 (2) - velocity of the residual penetrator after the first (second) plate of spaced array target,
meters/second (see Figure A-5).

Vs - striking velocity of penetrator, calculated from preimpact images of penetrator in both vertical

and horizontal planes, meters/second (see Figure A-1).
W.p - width of target plug, average dimension of plug, oriented to correspond to exit hole width
in target plate where applicable, estimated from x-ray images of target plug, used in plug mass

estimates, centimeters.

Wt L - net weight loss of target plate, determined by measuring weight of target plate before and

after each test firing, grams.
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APPENDIX B:

TABULATIONS OF INUIVIDUAL SHOT DATA
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